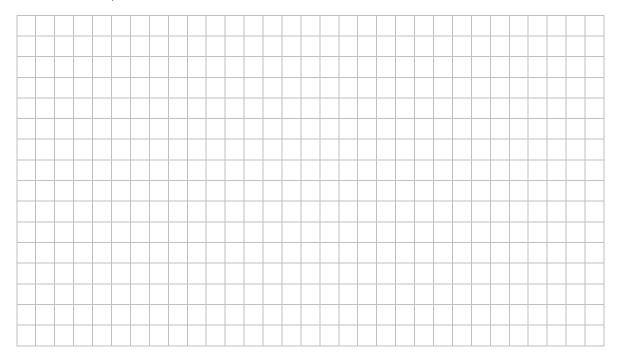
Photonen sind Quantenobjekte und zeigen Phänomene, die mithilfe des

<u>modells</u>

-z.B. registriert Detektor ein "Klick" Wellenmodells

-z.B. können Photonen


zeigen

erklärt werden können. Sie sind aber weder Teilchen noch Welle!

Leitfrage 4: "Entscheidet" das Photon vorher, ob es Phänomene zeigt, die mit dem Teilchen- oder Wellenmodell erklärt werden können?

Delayed-Choice

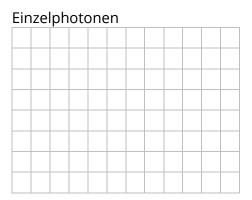
Aufgabe 1: Lies dafür den angegebenen Text von Müller und fasse die relevanten Punkte so zusammen, dass du mithilfe von diesen das Thema vorstellen kannst.

Merksatz

Photonen "entscheiden" nicht, welche Phänomene gezeigt werden. Sie sind Quantenobjekte und erst bei der Detektion treten Phänomene auf, die mit dem Teilchen- oder Wellenmodell erklärt werden können.

Leitfrage 5: Kann man eine "Wegmarkierung" dem Photon geben und ihm die Information "Weg" aufprägen?

Polarisation

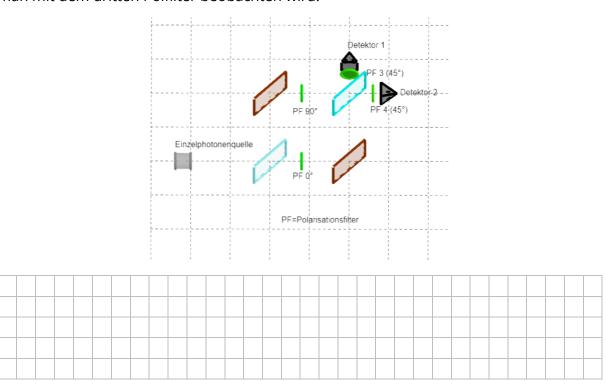

Definition

Polarisation bezeichnet die Schwingungsrichtung einer Welle im Wellenmodell.

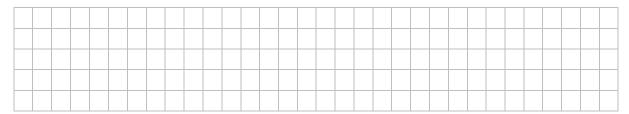
Durch Experimente beobachten wir bei Polarisationsfiltern:	
Das Photon wird transmittiert	t oder absorbiert. Das geschieht mit einer
oestimmten Photonen h	haben nach Passieren des Polarisationsfilters
dessen Polarisation.	
Weginformation und Interferenz	
Aufgabe 1: Beschreibe deine Beobachtung, wenn beide Polarisationsfilter gleich eingestellt sind.	
klassisches Licht	Einzelphotonen

Aufgabe 2: Beschreibe deine Beobachtung, wenn die beiden Polarisationsfilter senkrecht zueinander eingestellt sind.

Wenn man ______beobachten will, kann man keine Wegmarkierung setzen.


Wenn man den _____ markieren will, tritt keine Interferenz auf.

Definition


Wegmarkierung und Interferenz schließen sich gegenseitig aus.

Quantenradierer

Aufgabe 1: Mit deinem bisherigen Wissen: stelle eine Vermutung auf, welches Phänomen man mit dem dritten Polfilter beobachten wird.

Aufgabe 2: Überprüfe deine Vermutung mittels Simulation und erkläre das Phänomen. Warum heißt eine solche Anordnung "Quantenradierer"?

